DIgital Tхромать Tанк (DTT)

Причинный прогноз будущего в пространстве-времени Минковского

Оценка будущих событий - сложная задача. В отличие от людей подходы к машинному обучению не регулируются естественным пониманием физики. В дикой природе правдоподобная последовательность событий подчиняется правилам причинности, которые нельзя просто вывести из конечного обучающего набора. В этой статье исследователи (Имперский колледж Лондона) предлагают новую теоретическую основу для выполнения причинных предсказаний будущего путем встраивания пространственно-временной информации в пространство-время Минковского. Они используют концепцию конуса света из специальной теории относительности, чтобы ограничить и пересечь скрытое пространство произвольной модели. Они демонстрируют успешное применение в причинном синтезе изображений и предсказании будущих видеоизображений на основе набора данных изображения. Его структура не зависит от архитектуры и задачи и имеет строгие теоретические гарантии причинных возможностей.


Во многих повседневных сценариях мы делаем причинные прогнозы, чтобы судить о том, как могут развиваться ситуации, на основе наших наблюдений и опыта. Машинное обучение еще не разработано на этом уровне, хотя автоматизированные причинно-правдоподобные прогнозы очень желательны для критически важных приложений, таких как планирование лечения, автономные транспортные средства и безопасность. Недавняя работа привела к созданию алгоритмов машинного обучения для последовательного предсказания будущего и причинно-следственного вывода. Важное предположение, которое неявно принимают многие подходы, заключается в том, что пространство представления модели является плоским евклидовым пространством с N измерениями. Однако, как предполагают Arvanitidis et al. Как было показано, евклидово предположение приводит к неверным выводам, поскольку скрытое пространство модели может быть лучше охарактеризовано как многомерное искривленное риманово пространство, чем евклидово пространство. Кроме того, теорема Александрова-Зеемана предполагает, что для причинности требуется пространство лоренцевой группы, и отстаивает непригодность евклидовых пространств для причинного анализа. В этом посте ученые представляют новую структуру, которая меняет наше отношение к проблемам жесткого компьютерного зрения, таким как продолжение последовательностей изображений. Они встраивают информацию в пространственно-временное многомерное псевдо-сименсское многообразие - пространство-время Минковского - и используют специальную концепцию относительности светового конуса для выполнения причинного вывода. Вы концентрируетесь на временных последовательностях и синтезе изображений, чтобы отобразить все возможности вашего фреймворка.

Lesen Sie Mehr здесь